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The basic propagation properties of the silica and silicon subwavelength-diameter hollow wire waveguides
have been investigated by comparison. It shows that the silica and silicon subwavelength-diameter hollow
wire waveguides have some interesting properties, such as enhanced evanescent field in the cladding,
enhanced intensity in the hollow core, and large waveguide dispersion. For the different confinement
ability, the enhanced field in the hollow core and cladding of the silica subwavelength-diameter hollow wire
is much stronger than that of the silicon one for the same size.
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Dielectric optical waveguides with widths or diameters
from micrometers to millimeters have got successful ap-
plications in many fields such as optical communication,
optical sensing, and optical power delivery systems[1−3].
Many applications benefit from minimizing the width of
the waveguides, but fabricating low-loss optical waveg-
uides with subwavelength diameters remains challenging
because of high precision requirement. Recently, several
types of dielectric sub-micrometer and nanometer diam-
eter wires of optical qualities have been obtained[4−8].
These wires with diameters smaller than 1 µm are tens
to thousands times thinner than the commonly used mi-
crometer diameter waveguides. They can be used as air-
clad wire-waveguides with subwavelength-diameter cores,
and build blocks in the future micro- and nano-photonic
devices. These fibers have solid cores and the guiding
properties of the waveguides have been adequately stud-
ied. However, if the subwavelength-diameter wire is hol-
low, the guiding characteristics will be different. A team
of engineers from the University of California at Riverside
has began the exploratory preparation experiments[9] and
the subwavelength-diameter hollow wire waveguide offer
opportunities for a lot of miniaturized high performance
and novel photonic devices[10].

In this paper, based on exact solutions of Maxwell’s
equations and numerical calculations, the basic guiding
properties of silica and the silicon hollow wires have been
studied. The refractive index profile is schematically il-
lustrated in Fig. 1. A long straight hollow wire is a cylin-
drical structure of rotational symmetry involving three

Fig. 1. Cross-section and parameters of the subwavelength-
diameter hollow wire waveguide.

regions in the cross section: the hollow core with ra-
dius a, dielectric region with radius b, and the infinite
air cladding. Refractive indices of the core, dielectric re-
gion, and outer cladding are assumed to be n1, n2, and
n3, respectively. Translational invariance in the z di-
rection implies that there exists single-spatial-frequency
solutions proportional to exp(j(wt−βz)), where w is the
angular frequency and β is the longitudinal propagation
constant[11].

The z components of the field, Ez and Hz, satisfy the
following Helmholtz equation in the homogeneous sec-
tions in which refractive index is constant,
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where k0 = wc = w(µ0ε0)
1/2 is the free-space wave num-

ber, ε0 is the free-space permittivity, and c is the speed
of light. For k2
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2 − β2 < 0, they predict expo-
nentially decaying or growing fields with modified Bessel
functions Im and Km as solutions. Longitudinal field
components can be written as
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fs = sin(mφ + ϕm) exp[j(wt − βz)].
The transverse field components are obtained from the
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following equations:
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Applying boundary conditions at r = a and r = b,
a system of eight linear homogeneous equations is ob-
tained that is satisfied by the eight coefficients. The
propagation constant β is determined by the condition
that the determinant of the system of linear equations
should vanish[12]:

det[M(β)] = 0, (5)

where M is the resulting matrix of the system of equa-
tions. The power flow (power density) along the z direc-
tion in cylindrical coordinates is given by[11]
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r ]. (6)

We assume that the index of the air (n1 and n3) is 1.0,
and use the following Sellmeier-type dispersion formula
(at room temperature) to obtain the refractive indices of
the wire materials for fused silica[13]:
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for single crystal silicon:

n2 = 11.6858 +
0.939816

λ2
+

0.000993358

λ2 − 1.22567
, (8)

where the unit of λ is µm.
For the convenience, we use normalized propagation

constant B to characterize the wire and it is defined by
B = (β2−k2

0n
2
3)/(k2

0n2
2−k2

0n
2
3). Figure 2 shows the vari-

ation of B with respects to wavelength for HE11, TE01,
and TM01 modes in the silica and silicon hollow wires
with parameters: a = 10 nm, b = 100 nm. With the
increase of wavelength, B parameter decreases and be-
comes zero when λ approaches about 1 µm for HE11

mode. For TE01 and TM01 modes, they become cutoff at
a relatively shorter wavelength. For the same mode, the
silicon hollow wires have higher B parameter and longer
cutoff wavelength than the corresponding silica hollow
wires.

If b is set to be constant 100 nm and a varies, the B
parameter increases with the decrease of a/b and wave-
length, as shown in Fig. 3. It also can be seen that B
increases with the narrower hollow core. With the in-
crease of B parameter, the hollow wire will confine light
energy much easier.

Fig. 2. Variation of B with wavelength for the three lowest
order modes for (a) the silica hollow wire and (b) the silicon
hollow wire.

Fig. 3. Variation of B with wavelength for the hollow wire
with a/b for (a) the silica hollow wire and (b) the silicon hol-
low wire.

In practical applications, such as evanescent wave
based optical devices, it is important to know the profile
of the power distribution around the waveguide. Here,
the wires are all operated in single mode. Profiles of
power density for the silica hollow wires at 633 nm wave-
length are shown in Fig. 4(a), in which the mesh profile
stands for the propagation field inside the dielectric re-
gion, and the gradient profile stands for the evanescent
fields in air. To clarify the influence of the central hole
on the properties of the hollow wire, the power density
of the subwavelength-diameter wire without central hole
(core size 100 nm) has been plotted in Fig. 4(b). As can
be seen, the hollow wire leaves a large amount of light
guided outside as evanescent waves[14]. The intensity in
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Fig. 4. z-direction power density of (a) the silica hollow wire
with a/b = 0.1 and b = 100 nm, (b) the subwavelength-
diameter silica wire with core size 100 nm. Mesh, field inside
the dielectric region. Gradient, field outside the dielectric
region.

Fig. 5. z-direction power density of (a) the silicon hollow
wire with a/b = 0.2 and b = 50 nm, (b) the subwavelength-
diameter silicon wire with core size 50 nm. Mesh, field inside
the dielectric region. Gradient, field outside the dielectric
region.

central hollow region of the hollow wire has been en-
hanced, and the region is filled with air. The enhanced
intensity results from the discontinuity of the electric
field at the interface between the hollow region and the
dielectric region[15,16]. For the small size of this central

air hole, the decay of the evanescent wave within the
hole is minimal, and the enhanced field intensities are
achieved throughout the hole. Furthermore, the power
density of the silicon hollow wire and the correspond-
ing subwavelength-diameter solid core wire are shown
in Fig. 5. The silicon dielectric region can confine the
light energy well, so the evanescent wave outside the core
region is relatively weak compared with the silica wire in
Fig. 4. For the central hollow region, the silicon hollow
wire also has enhanced intensity compared with the cor-
responding solid core subwavelength-diameter wire. The
enhanced intensity in the central region may open up
the prospect of using these holes as sites for interacting
intense light with materials located within the air void.
For the cases discussed based on the vectorial model, the
power distributions are not symmetric rotationally and
have strong dependence on the azimuthal angle[11,14].

To clarify the magnitude of enhancement, we define
the maximum enhancement factor as the ratio of the
maximum power density in the central region of the hol-
low wire and that of the corresponding subwavelength-
diameter wire without the central hollow region. In the
calculation, we set the power densities of the hollow wire
and the subwavelength-diameter wire equal at the inter-
face of dielectric region and the outermost air cladding.
If a = 10 nm and b = 100 nm, it can be obtained that
the maximum enhancement factor is 1.33 for the silica
hollow wire.

With propagation constants obtained by numerically
solving Eq. (5), the group velocities vg and waveguide

dispersions Dw can be obtained[13]. The wavelength-
dependent waveguide dispersions of the silica and silicon
hollow wire are shown in Fig. 6. It can be seen clearly
that the waveguide dispersions of these wires can be
very large compared with those of weakly guiding fibers.
Results also show that, large dispersion shift can be
obtained by changing the central hollow region. Control-
ling light propagation properties by tailoring waveguide

Fig. 6. Wavelength-dependent waveguide dispersion of funda-
mental modes of (a) the silica hollow wire and (b) the silicon
hollow wire with different a/b.
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dispersion are used in many fields such as optical com-
munication and nonlinear optics, therefore, these wires
present opportunities for achieving enhanced dispersions
with reduced sizes.

Here, the polarization dependence of the structure
has been studied. By using Eqs. (2)—(4), we can get
Er/|Er| = Eϕ/|Eϕ|, so Er and Eϕ have the same phase.
Therefore, the vector orientation of the total transverse
component does not vary in time. Thus the transverse
component of the field is linearly polarized with respect
to the time evolution at each fixed spatial point (r, φ).
Meanwhile, the phase of the longitudinal component Ez

differs from that of the transverse components Er and Eϕ

by π/2. Due to this phase difference, the total electric
field rotates elliptically with time. Thus the properties of
the exact fundamental mode HE11 may become substan-
tially different from the linearly polarized mode LP01.

In conclusion, we have studied the basic properties
of the subwavelength-diameter silica and silicon hollow
wires. We assume the wires are ideally uniform in
terms of the sidewall smoothness and diameter unifor-
mity. Compared with large core optical waveguides, the
hollow wires show some interesting properties, such as
enhanced evanescent field, enhanced intensity in the hol-
low region, and large waveguide dispersion, which may
offer opportunities for developing a number of miniatur-
ized high performance and novel photonic devices.

M. Wu’s e-mail address is manmwu@gmail.com.
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